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Abstract. In 1964 Tuy introduced a new type of cutting plane, the concavity cut, in the context of
concave minimization. These cutting planes, which are also known as convexity cuts, intersection
cuts and Tuy cuts, have found application in several algorithms, e.g., branch and bound algorithm,
conical algorithm and cutting plane algorithm, and also in algorithms for other optimization prob-
lems, e.g., reverse convex programming, bilinear programming and Lipschitzian optimization. Up to
now, however, it has not been possible to either prove or disprove the finite convergence of a pure
cutting plane algorithm for concave minimization based solely on these cutting planes. In the present
paper a modification of the concavity cut is proposed that yields deeper cutting planes and ensures
the finite convergence of a pure cutting plane algorithm based on these cuts.
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1. Introduction

In this paper we are concerned with the minimization of a concave function f (x)
with f : IRn �→ IR over a nonempty polytope P with P ⊂ IRn. Concave minim-
ization problems of this type have been encountered, for instance, in the context
of site selection, inventory management, production and location problems and
transportation planning (cf., e.g., Horst and Tuy, 1996).

Most of the difficulties with this type of optimization problem arise because a
concave minimization problem may have a very large, even an exponentially large
number of local optimal solutions (cf., e.g., Kalantari, 1986), and no local criteria
are known that allow us to determine whether a local optimal solution is also a
global one or not. Pardalos and Schnitger (1988) showed that even a problem as
simple as minimizing a concave quadratic function over a hypercube is N P -hard.
However, it is well known that a vertex of the polytope P exists which is a global
optimal solution.

One of the most popular algorithms in concave minimization, the conical al-
gorithm (a special type of branch and bound algorithm), was first proposed in 1964
in a seminal paper by Tuy. In 1973, however, by counterexample, the algorithm
was shown not to be convergent (Zwart, 1973). Since then several modifications of
the algorithm have been proposed with the goal of ensuring its (finite) convergence
(cf., e.g., Thoai and Tuy, 1980, Horst and Tuy, 1996; Tuy, 1998).
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To perform a bounding operation in the conical algorithm Tuy introduced the
concept of concavity cuts, which in the literature are now also known as con-
vexity cuts, intersection cuts and, in his honor, Tuy cuts. Apart from concave
minimization, concavity cuts have also been applied to other types of optimization
problems. For instance, for integer programming Balas (1971) proposed a cutting
plane algorithm based on concavity cuts and proved its finite convergence. And
for the Generalized Lattice Point Problem Sen and Sherali (1985) provided an
example of non-convergence of Tuy-type concavity/disjunctive cuts, along with
certain information-processing rules for making a cutting plane algorithm conver-
gent. Further examples of problems to which concavity cuts have been applied
are bilinear programming (e.g., Konno, 1976; 1981; Sherali and Shetty, 1980;
Vaish and Shetty, 1977), reverse-convex programming (e.g., Gurlitz and Jacob-
sen, 1991; Hillestad and Jacobsen, 1980; and Sen and Sherali, 1987), Lipschitzian
optimization (e.g., Bulatov, 1990) and zero-one integer programming (e.g., Young,
1971).

Even though Tuy also outlined a cutting plane algorithm for concave minimiz-
ation based on concavity cuts (cf. Tuy, 1964, Remark 3), it was Cabot (1974) who
was the first to explicitly propose a pure cutting plane algorithm using concavity
cuts. Since then several other versions have been suggested, most of them resem-
bling an algorithm recently proposed by Horst and Tuy (1996). It is still unknown,
however, whether or not the finite convergence of these algorithms can be ensured
solely by concavity cuts.

To be on the safe side some authors have introduced enumerative elements in
their cutting plane algorithms. For instance, Konno (1980) considers the maxim-
ization of a convex function over a hypercube, which is equivalent to a concave
minimization problem. Exploiting the special structure of this problem, he ensures
the finite convergence of his cutting plane algorithm by examining and eliminating
vertices of the reduced polytope that were also vertices of the original polytope,
i.e., that were binary.

For general concave minimization problems the finite convergence of a cutting
plane algorithm is often ensured by incorporating facial cuts from time to time (cf.,
e.g., Tuy and Horst, 1996; and Sherali and Shetty, 1980, in the context of bilin-
ear programming). Facial cuts, which were introduced by Majthay and Whinston
(1974), eliminate faces of the reduced polyhedron that are also faces of the original
polyhedron. However, to derive a facial cut one first has to identify such a face with
using a special procedure.

Our goal in this paper is to modify concavity cuts in a way that on the one hand
we obtain deeper cutting planes and on the other finite convergence of a cutting
plane algorithm is ensured by the cutting planes themselves. In the next section of
the paper we discuss the basic concepts of concavity cuts in the context of concave
minimization. In the third and fourth sections we present our modifications of the
concavity cut concept. In the fifth section we describe an iterative procedure for
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deepening the resulting cutting planes. The final section contains some concluding
remarks.

2. Concavity Cuts and Cutting Plane Algorithms

In the following we consider the concave minimization problem

minimize f (x)

s.t. x ∈ P,
(2.1)

where f : IRn �→ IR is concave on IRn and P = {x ∈ IRn | Ax ≤ b} is a
polyhedron. For the sake of simplicity we assume that P is bounded and dim(P ) =
n, i.e., P is a full-dimensional polytope, and that for any real number γ the level
set

L(γ ) = {x ∈ IRn | f (x) ≥ γ }
is closed and bounded. Note that since f (x) is concave the sets L(γ ) are convex.
Furthermore, we content ourselves with finding an global ε-optimal solution, i.e. a
solution x̂ ∈ P with

f (̂x) ≤ f (x)+ ε ∀ x ∈ P,

where ε > 0 is an arbitrary but predetermined tolerance.
A cutting plane algorithm for concave minimization consists of two alternating

phases: search and cut. In the search phase we find a local optimum x0 and in the
cut phase we eliminate x0 without excluding a solution x ∈ P with f (x) < f̂ − ε,
where f̂ denotes the objective value of the best solution known so far. Before
giving the cutting plane algorithm in pseudo code we describe the two phases in
more detail.

Using the well-known fact that there exists a vertex of the polytope P which
is a global optimum of (2.1), in the search phase we can restrict our search to
the vertices of P . In this context we call a vertex x0 of P a local optimum or
a star optimum if and only if there exists no vertex of P adjacent to x0 with a
smaller value. The procedure for identifying a star optimum is straightforward.
Starting at an arbitrary vertex of P we examine its adjacent vertices. Note that
special care must be taken to ensure that in case of degeneracy all adjacent vertices
are enumerated. If there is one with a smaller value we pivot to the adjacent vertex
with the smallest value and examine its adjacent vertices. Otherwise we stop. This
procedure terminates after a finite number of iterations with a star optimum x0.

In the cut phase we eliminate x0 with a cutting plane, e.g., a concavity cut. To
this end we assume that x0 is a nondegenerate vertex of P . Hence there exist exactly
n vertices x1, x2, . . . , xn of P that are adjacent to x0. Therefore the directions of
the edges of P emanating from x0 can be given w.l.o.g. by ui = xi − x0 for i =
1, . . . , n. Note that u1, . . . , un are linearly independent. With this the cone

C(x0) = x0 + cone(u1, u2, . . . , un)
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Figure 1. Deriving a concavity cut

is the smallest cone vertexed at x0 that contains P . This approximation of P allows
us to derive easily a cutting plane which eliminates with x0 only points in L(f̂ −ε),
i.e., it eliminates no point x ∈ P with f (x) < f̂ − ε. Such a cutting plane is
called a valid cut. A valid cut can be derived as follows. First we determine the
intersection points Ei(τi) of the cone edges Ei(τ) = x0 + τui , τ ≥ 0, with the
boundary of L(f̂ − ε). Because of f (x0) ≥ f̂ and f (xi) ≥ f̂ we have τi > 1 for
i = 1, 2, . . . , n. Then we determine the unique hyperplane cT(x − x0) = 1 that
contains these points, i.e.

cT =
(

1

τ1
,

1

τ2
, . . . ,

1

τn

)T

U−1, (2.2)

where U = (u1, u2, . . . , un), and yT denotes the transpose of a vector y. By
construction

C(x0) ∩ {x ∈ IRn | cT(x − x0) ≤ 1}
is a simplex that is contained in L(f̂ − ε). Therefore, and because of P ⊂ C(x0),
the concavity cut cT(x − x0) ≥ 1 eliminates x0 but no x ∈ P with f (x) < f̂ − ε,
i.e., it is a valid cut (cf. Figure 1).

To derive a concavity cut we had to assume that the vertex x0 of P was nonde-
generate. If this is not the case, then there might be more than n vertices of P
adjacent to x0, e.g., x1, x2, . . . , xr with r ≥ n. By defining ui := xi − x0 the cone

C(x0) = x0 + cone(u1, u2, . . . , ur) (2.3)

is also the smallest cone vertexed at x0 that contains P , but u1, u2, . . . , ur are
in case of r > n no longer linearly independent. Hence there may not exist a
hyperplane cT(x − x0) = 1 that passes through all the intersection points Ei(τi). In
this case we consider, as proposed by Carvajal-Moreno (1972) and Benson (1999),
a basic feasible solution of the system

cT(E(τi)− x0) ≥ 1 for i = 1, 2, . . . , r,
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which is equivalent to

cTui ≥ 1

τi
for i = 1, 2, . . . , r. (2.4)

Hence the resulting cutting plane cT(x − x0) ≥ 1 intersects all edges of C(x0) in
L(f̂−ε) and contains at least n intersection points E(τi). Obviously cT(x−x0) ≥ 1
eliminates x0 without excluding a point x ∈ P with f (x) < f̂ − ε, i.e., it is
a valid cut. Other ways to deal with degeneracy in the context of concavity cuts
are described, for instance, in Horst and Tuy (1996). Appropriate modifications of
the concavity cut concept for cases where the objective function f (x) of (2.1) is
quasiconcave or the polytope P is not full dimensional are proposed by Benson
(1999).

Based on the concepts described above the structure of a pure cutting plane
algorithm for problem (2.1) is as follows.

ALGORITHM I

Choose ε with ε > 0;
Set f̂ := ∞, P0 := P and k := 0;

While Pk �= ∅ do
begin

search w.r.t. Pk and f (x) for a star optimum x0k ;
if f (x0k ) < f̂ , then set f̂ := f (x0k ) and x̂ := x0k ;
derive w.r.t. Pk and f (x) a concavity cut cT

k(x − x0k ) ≥ 1;
set Pk+1 := Pk ∩ {x ∈ IRn | cT

k(x − x0k ) ≥ 1} and k := k + 1;
end.

In Algorithm I we were not very specific about how to choose a starting point for
the search for a star optimum. There are several ways to do this (see, e.g., Horst
and Tuy, 1996; Porembski, 1999; or Zwart, 1971). Even though this may have a
great impact on the speed of the algorithm, it does not influence its convergence.
Therefore we do not go into any more detail about this matter.

If Algorithm I terminates, the best solution known so far, x̂, is an global ε-
optimal solution of problem (2.1). However, it is still unknown whether this cut-
ting plane algorithm always terminates after a finite number of iterations or not,
i.e. whether we can always eliminate the polytope P with a finite number of con-
cavity cuts? Experiments in the mid-1970s (cf., e.g., Zwart, 1971) showed that the
concavity cuts used in a pure cutting plane algorithm such as Algorithm I tend to
become more and more shallow, thereby slowing down the search process. Hence
it makes sense to formulate a condition for the finite convergence of Algorithm I
as follows (see Horst and Tuy, 1996, Theorem V.2).

THEOREM 2.1 If the sequence {ck} is bounded, then Algorithm I is finite.
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Theorem 2.1 states that if there exists a constant α such that we always have ‖ck‖ <
α, where ‖·‖ denotes the Euclidian norm, then the cutting plane algorithm is finite.
Note that 1/‖ck‖ is the distance from x0k to the hyperplane cT

k(x − x0k ) = 1, which
is often used as a measure of the depth of the cut.

Horst and Tuy (1996) formulated the condition in Theorem 2.1 in the context
of concavity cuts. However, Theorem 2.1 holds for an arbitrary valid cut as long as
this cut is of the form cT

k(x − x0) ≥ 1. Even though the condition given in Theorem
2.1 seems to be quite simple, it is usually difficult to satisfy this condition in a pure
cutting plane algorithm using concavity cuts.

3. Modifying Concavity Cuts: Basic Concepts

In this section we provide a modification of the concept underlying concavity cuts.
Our goal is to ensure for the resulting cuts the fulfillment of a condition which is
equivalent to the condition given in Theorem 2.1. As a basis for the following con-
siderations let us have a look at Theorem 2.1 from a different point of view, where
to simplify the notation we omit the index k, which stands for the kth iteration of
Algorithm I.

Let cT(x−x0) ≥ 1 denote the concavity cut derived w.r.t. the cone C(x0) = x0 +
cone(u1, u2, . . . , ul), where l = n if x0 is nondegenerate and l ≥ n otherwise. By
construction x0 is the only point of P and C(x0) that is supported by the hyperplane
cT(x − x0) = 0 (cf. Figure 2). Let ϕi with 0 ≤ ϕi ≤ π

2 be chosen such that

cos ϕi = 〈c, ui〉
‖c‖‖ui‖ for i = 1, 2, . . . , l, (3.5)

where 〈·, ·〉 denotes the scalar product. Hence ϕi gives us the angle between the
normal of the hyperplane cT(x − x0) = 0 and the ith edge of the cone C(x0).
Furthermore, let, as above, Ei(τi) be the intersection point of the cone edge Ei(τ)

with the boundary ofL(f̂−γ ) and let Ei(τ̄i) denote the point where the hyperplane
cT(x − x0) = 1 passes through the ith edge of C(x0), i.e. τ̄i = τi in case of l = n

and 0 < τ̄i ≤ τi in case of l > n. Then the distance from Ei(τ̄i) to x0 is ‖τ̄iui‖.
Hence the distance from x0 to the point where the cut cT(x − x0) ≥ 1 intersects the
ray x0 + λc, λ ≥ 0 is

cos ϕi · ‖τ̄iui‖ (3.6)

(cf. Figure 2). Note that (3.6) gives us the depth of the cut cT(x − x0) ≥ 1. Hence
we have

1

‖c‖ = cos ϕi · ‖τ̄iui‖ for i = 1, 2, . . . , l. (3.7)

This observation can be used to obtain an equivalent formulation of Theorem 2.1.

THEOREM 3.1 Let cT
k(x − x0k ) ≥ 1 be the concavity cut that was derived in the

kth iteration of Algorithm I, and let ϕik for ik = 1, 2, . . . , lk be the corresponding
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Figure 2. Definition of ϕi

angles that are determined according to (3.5). {ck} is bounded if and only if there
exists a constant κ with κ > 0 such that for k = 1, 2, . . .

κ ≤ lk

min
ik=1

cos ϕik , (3.8)

holds.
Proof. Let us first suppose that there exists a constant α such that ‖ck‖ < α.

Then we have

1

α
<

1

‖ck‖ = cos ϕik · ‖τ̄ik uik‖ for ik = 1, 2, . . . , lk.

Let fopt denote the objective value of the global optimal solution of the concave
minimization problem (2.1) and let # be the diameter of the level set L(fopt − ε),
which by assumption is bounded. Therefore, we have 1/α < cos ϕik · #, which is
equivalent to

1

α ·# < cos ϕik

for ik = 1, 2, . . . , lk and k = 1, 2, . . . , and hence there exists a constant κ with
κ > 0 such that condition (3.8) is satisfied.

Now we have to prove the converse direction. To do this let us suppose that there
exists a constant κ > 0 such that condition (3.8) holds. Since f (x) is continuous
and the level sets L(γ ) are compact by assumption there exists a constant δ > 0
such that for all γ ≥ fopt with L(γ ) �= ∅ the distance from the boundary of L(γ )
to the boundary of L(γ − ε) is greater than δ. Furthermore, by construction of the
concavity cut cT

k(x − x0k ) ≥ 1 the equation cT
k(Eik (τik )− x0) = 1 holds for at least

one index ik ∈ {1, 2, . . . , lk}, i.e. τik = τ̄ik . Because of Eik (τik ) ∈ bd(L(f̂ − ε))

and x0k ∈ L(f̂ ) we therefore have

δ < ‖Eik (τik )− x0k‖ = ‖τik uik‖.
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Applying assumption (3.8), with this and (3.7) we get

1

‖ck‖ = cos ϕik · ‖τikuik‖ > κ · δ > 0.

Hence we have ‖ck‖ < 1/(κ · δ), which verifies Theorem 3.1. �
Similar to the condition given in Theorem 2.1, the condition in Theorem 3.1 is

difficult to satisfy. However, Theorem 3.1 gives us an idea about how we can ensure
the finite convergence of a cutting plane algorithm by modifying the concept of
concavity cuts. Before we go into more detail it will be helpful for what follows to
generalize the cone C(x0) that we used above to derive a concavity cut.

DEFINITION 3.1 Let x0 ∈ IRn such that x0 /∈ int(P ), where P is a full-
dimensional polytope. Then C(x0) denotes the smallest cone of the form C(x0) =
x0 + cone(u1, u2, . . . , us) with s ≥ n that contains P .

If x0 is a vertex of the polytope P , then the cone defined in Definition 3.1 is
identical with the cone used to derive a concavity cut.

Let cT(x − x0) ≥ 1 be the concavity cut derived w.r.t. the vertex x0 of the
polytope P , where x0 ∈ L(f̂ ). If this cut is very shallow, then minli=1 cos ϕi is also
very small. The idea is now to increase minli=1 cos ϕi by pulling the base of the
cone C(x0) in the direction −c, i.e. we consider a cone C(x′

0) with x′
0 = x0 − λ0c,

where λ0 > 0. Here we choose λ0 such that x′
0 lies on the boundary of L(f̂ − ε)

(cf. Figure 3). Note that by assumption x0 ∈ L(f̂ ).
An algorithm for obtaining an explicit representation of the resulting coneC(x′

0)

is given in the fourth section. For what follows let us suppose that C(x′
0) is of the

form

C(x′
0) = x′

0 + cone(u′
1, u

′
2, . . . , u

′
s).

Since P is a polytope we can assume w.l.o.g. that there exist vertices x′
1, x

′
2, . . . , x

′
s

of P such that u′
i = x′

i − x′
0 for i = 1, 2, . . . , s. Furthermore, we can assume

w.l.o.g. f (x′
i) ≥ f̂ , because otherwise x′

i is a solution of problem (2.1) with a
smaller objective value than the best solution known so far. It holds:

THEOREM 3.2 Let the cone C(x′
0k
) = x′

0k
+ cone(u′

1k
, u′

2k
, . . . , u′

sk
) be construc-

ted in the kth iteration of a cutting plane algorithm in the way described above,
where x′

0k
∈ bd(L(f̂ − ε)). Then there exists a constant κ ′ > 0 such that

κ ′ ≤ cos ϕ′
ik

= 〈ck, u′
ik
〉

‖ck‖‖u′
ik
‖ for ik = 1, 2, . . . , sk and k = 1, 2, . . . , (3.9)

where cT
k(x − x0k ) ≥ 1 denotes the corresponding concavity cut.
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Figure 3. The cone C(x′
0)

Proof. Consider the two-dimensional simplex spanned by x0k , x
′
0k

and E′
ik
(̂τik ),

where E′
ik
(̂τik ) denotes the point where the hyperplane cT

k(x − x0k ) = 0 passes
through the edge E′

ik
(τ ) = x0k +τu′

ik
, τ ≥ 0, of C(x′

0k
) (cf. Figure 4). This simplex

is contained in L(f̂ − ε) and it holds

‖x0k − x′
0k‖ = cos ϕ′

ik
· ‖E′

ik
(̂τik )− x′

0k‖. (3.10)

Since x0k ∈ L(f̂ ) and x′
0k

∈ bd(L(f̂ − ε)) it holds ‖x0k − x′
0k

‖ > δ, where δ is
defined as in the proof of Theorem 3.1. Furthermore, we obviously have ‖E′

ik
(̂τik )−

x′
i0
‖ ≤ #, where # is also defined in the same way as in the previous proof. With

(3.10) we therefore obtain

δ

#
≤ cos ϕ′

ik
,

which proves Theorem 3.2. �
Now that we have the cone C(x′

0) we can use it in a way similar to how we used
the cone C(x0) to derive a cutting plane. To this end we determine the intersection
points E′

i (τ
′
i ) of the edges E′

i (τ ) = x′
0 + τu′

i , τ ≥ 0, of C(x′
0) with the boundary of

L(f̂ − ε). However, to ensure that the resulting cutting plane has a certain depth,
we have to make some modifications to the concavity cut concept.

Again let cT(x − x0) ≥ 1 denote the concavity cut derived w.r.t. x0 and consider
the hyperplane cT(x − x0) = 0. This hyperplane supports the polytope P at x0 and
intersects the edges of the cone C(x′

0) in the interior of L(f̂ − ε). Let, as in the
proof of Theorem 3.2, E′

i (̂τi), i = 1, 2, . . . , s denote these intersection points. By
assumption we have u′

i = x′
i − x0 for i = 1, 2, . . . , s, where x′

i is a vertex of P
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Figure 4. The cut cT(x − x0) ≥ β0

with x′
i ∈ L(f̂ ). Obviously for these vertices holds

xi ∈ conv
(
E′
i (̂τi), E

′
i (τ

′
i )

)
.

Since x′
i ∈ L(f̂ ) and E′

i (τ
′
i ) ∈ bd(L(f̂ − ε)), we therefore have

‖E′
i (τ

′
i )− E′

i (̂τi)‖ ≥ δ for i = 1, 2, . . . , s. (3.11)

We can push the hyperplane cT(x−x0) = 0 forward, i.e. we can increase β until
cT(x−x0) = β passes through at least one of the points E′

1(τ
′
1), E

′
2(τ

′
2), . . . , E

′
s(τ

′
s)

for the first time (cf. Figure 4). Let cT(x−x0) = β0 denote the resulting hyperplane
and let, to be congruent with the notation in Figure 4, w.l.o.g. cT(E′

2(τ
′
2)−x0) = β0.

Then cT(x − x0) ≥ β0 is a valid cut, i.e. it eliminates x0 without excluding a point
x ∈ P with f (x) < f̂ − ε. The depth of this cut is β0/‖c‖, where because of
Theorem 3.2 and (3.11) holds

β0

‖c‖ = cos ϕ′
2 · ‖E′

2(τ
′
2)− E′

2(̂τ2)‖ ≥ κ ′ · δ. (3.12)

Note that the constants κ ′ and δ are independent of the respective cut. Hence by the
procedure just described we can ensure that the resulting cut cT(x − x0) ≥ β0 has
at least a certain depth. Therefore, when in Algorithm I we replace the concavity
cut with these cuts, the resulting algorithm is finite. Furthermore, by comparing
the corresponding concavity cut and the cut cT(x − x0) ≥ β0 we get the following
hierarchy.

THEOREM 3.3 For the cut cT(x − x0) ≥ β0 it holds β0 ≥ 1. If f (x) is strictly
concave, then we even have β0 > 1.

Proof. Let us denote by I the intersection of the level set L(f̂ − ε) and the
hyperplane cT(x − x0) = 1, i.e.

I := L(f̂ − ε) ∩ {x ∈ IRn | cT(x − x0) = 1}.
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The idea of the proof is to show that each edge E′
i (τ ) of the cone C(x′

0) intersects
I in its relative interior. If this is the case, then it holds

cT(E′
i (τ

′
i )− x0) ≥ 1 for i = 1, 2, . . . , s, (3.13)

where, as above, E′
i (τ

′
i ) denotes the intersection point of the edge E′

i (τ ) and
bd(L(f̂ − ε)). If f (x) is strictly concave, then we even have

cT(E′
i (τ

′
i )− x0) > 1 for i = 1, 2, . . . , s. (3.14)

The inequalities (3.13) and (3.14) follow from the fact that in the first case f (x) ≥
f̂ −ε and in the second case f (x) > f̂ −ε for all x ∈ intrel(I) holds, where intrel(·)
denotes the relative interior, which means that the intersection points of the edges
E′
i(τ ) with the boundary of L(f̂ − ε) have to lie in the closed and open half-space,

respectively, defined by the concavity cut. Since cT(x − x0) = β0 contains at least
one of these intersection points, we can immediately see that we have β0 ≥ 1 and
β0 > 1, respectively.

Now let us consider the edge E′
i (τ ) and let us prove that it intersects I in its

relative interior. By construction each edge E′
i(τ ) of the cone C(x′

0) contains at
least one vertex of the polytope P . As above, let x′

i be the respective vertex lying
on E′

i (τ ), where we assume w.l.o.g. x′
i ∈ L(f̂ ). Furthermore, let E′

i (τ̄
′
i ) denote the

intersection point of the edge E′
i (τ ) and the hyperplane cT(x − x0) = 1. We now

have to consider two cases.

Case 1. Suppose that it holds cT(x′
i − x0) ≥ 1. Because of cT(x′

0 − x0) < 1 we
therefore have

E′
i (τ̄

′
i ) ∈ {(1 − λ)x′

0 + λx′
i | 0 < λ ≤ 1}.

It follows from x′
0 ∈ L(f̂ − ε) and x′

i ∈ L(f̂ ), L(f̂ ) ⊂ int(L(f̂ − ε)) and the
convexity of L(f̂ − ε) that E′

i(τ̄
′
i ) ∈ int(L(f̂ − ε)). Hence in this case we have

E′
i(τ̄

′
i ) ∈ intrel(I).

Case 2. Suppose that it holds cT(x′
i − x0) < 1. Since x′

0 �∈ C(x0) and x′
i ∈ P ⊂

C(x0), the edge E′
i (τ ) intersects the boundary of the cone C(x0) at a point E′

i (̃τ
′
i )

with cT(E′
i (̃τ

′
i ) − x0) < 1. It is not difficult to verify that because of the special

construction of the cone C(x′
0) each point E′

i(τ ) with τ > τ̃ ′
i is contained in the

interior of the cone C(x0). Because of cT(E′
i (̃τ

′
i )− x0) < 1 we have τ̄ ′

i > τ̃ ′
i . Since

C(x0) ∩ {x ∈ IRn | cT(x − x0) = 1} ⊂ I

we therefore have E′
i (τ̄

′
i ) ∈ intrel(I), i.e. in this case too the edge E′

i (τ ) intersects
the hyperplane cT(x − x0) = 1 in the interior of L(f̂ − ε). Together with the
considerations above this proves the theorem. �
In general, even if f (x) is not strictly concave, the cut cT(x − x0) ≥ β0 is not
only equivalent to but dominates the corresponding concavity cut, i.e., we have
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Figure 5. The cut dT(x − x0) ≥ 1

β0 > 1. However, in most cases it is not the deepest cut possible that can be
derived w.r.t. the cone C(x′

0). Obviously this is also the case for the cut indicated in
Figure 4. To get a deeper cut we determine the intersection points of the cone edges
of C(x′

0) with the hyperplane cT(x − x0) = β0. Let E′
1(τ̆1), E

′
2(τ̆2), . . . , E

′
s(τ̆s) be

these points. Then we solve the linear program

minimize cTd

s.t. dT(E′
i (τ

′
i )− x0) ≥ 1 for i = 1, 2, . . . , s,

dT(E′
i (τ̆i)− x0) ≤ 1 for i = 1, 2, . . . , s,

(3.15)

i.e., we determine a valid cut dT(x − x0) ≥ 1 that passes through the edges of
C(x′

0) between E′
i (τ̆i) and E′

i(τ
′
i ) and thereby maximizes the distance from x0 to

its intersection point with the ray x0 + λc, λ ≥ 0. Note that d = 1
β0
c is a feasible

solution of (3.15) and that the linear program (3.15) is bounded since L(f̂ − ε) is
bounded by assumption. By construction the resulting cut dT(x−x0) ≥ 1 dominates
or is at least equivalent to the cut cT(x − x0) ≥ β0 and we therefore have

1

‖d‖ ≥ β0

‖c‖ ≥ κ ′ · δ.

Such a cutting plane is indicated in Figure 5. Comparing this cut with the corres-
ponding concavity cut indicated in Figure 1, we can see that both cuts exclude x0,
but that the cut in Figure 5 eliminates a much larger portion of the polytope P than
the concavity cut.

REMARK 3.1 Since our main interest in the context of cutting plane algorithms
is to derive cuts which are as deep as possible, we have focused our attention
on concavity cuts. However, each cut c̃T(x − x0) ≥ 1 that for i = 1, 2, . . . , s
intersects the ray Ei(τ) of the ‘concavity cut cone’ C(x0) at a point contained in
conv(x0, Ei(τi)) is obviously also a valid cut since it is dominated by the concavity
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cut. In the literature such a cut is known as a γ -valid cut, where in our case we
have γ = f̂ − ε (see, e.g., Horst and Tuy, 1996). It is not hard to verify that as
long as the hyperplane c̃T(x − x0) = 1 contains at least one intersection point of
a ray of C(x0) with bd(L(f̂ − ε)), all concepts described above also hold true for
the γ -valid cut c̃T(x − x0) ≥ 1.

But why consider such a cutting plane? One reason is that it may sometimes be
useful to derive a cone C(x′

0) by pulling the base of the cone C(x0) in the direction
−c̃ instead of the direction −c, where c̃T(x − x0) ≥ 1 is a suitable γ -valid cut and
cT(x − x0) ≥ 1 the corresponding concavity cut. Hence we get a whole connected
area on the boundary of the level set L(f̂ − ε) from which we can choose the base
x′

0 of the cone C(x′
0). However, the shallower a concavity cut the larger the angles

ϕi determined according to (3.5), and as a result the smaller this area turns out to
be.

In spite of Remark 3.1, as above, for the sake of simplicity we will concentrate in
the subsequent text on concavity cuts. However, the reader should bear in mind that
the considerations also hold true for γ -valid cuts satisfying the conditions stated in
Remark 3.1.

4. Cone Adaptation

4.1. THE BASIC PROCEDURE

In the previous section we described a method for deriving cutting planes with a
certain depth. To derive these cutting planes we need a representation of the cone
C(x′

0) of the form

C(x′
0) = x′

0 + cone(u′
1, u

′
2, . . . , u

′
s). (4.16)

We can obtain such a representation in three steps. In the first step we consider the
‘concavity cut cone’

C(x0) = x0 + cone(u1, u2, . . . , ul) (4.17)

and derive from it the base cone

Ĉ(x′
0) = x′

0 + cone(̃u1, ũ2, . . . , ũl). (4.18)

Note that we always have n ≤ l ≤ s. The base cone is vertexed at x′
0 and its extreme

rays touch the boundary of P but contain no interior points of P . This cone does
not necessarily contain the polytope P , but if it does not it can be used to construct
such a cone

C̃(x′
0) = x′

0 + cone(̃u1, ũ2, . . . , ũt ) (4.19)

with t ≥ s (step 2). Since the representation of the cone C̃(x′
0) might not be min-

imal, we have to identify among ũ1, ũ2, . . . , ũt the extreme directions of C̃(x′
0),
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say ũ1, ũ2, . . . , ũs (step 3). By setting u′
i := ũi for i = 1, 2, . . . , s we obtain a

representation of the cone C(x′
0) of the form (4.16).

In the following subsection we discuss the first step in deriving the cone C(x′
0),

the construction of the base cone Ĉ(x′
0).

4.2. DERIVING THE BASE CONE

The base cone Ĉ(x′
0) is derived successively from the concavity cut cone C(x0).

The basic concept is the following. We initially define

x0(λ) := x0 − λc and u
(0)
i (λ) := x

(0)
i − x0(λ) for i = 1, 2, . . . , l,

(4.20)

where x(0)1 , x
(0)
2 , . . . , x

(0)
l are the neighboring vertices of x0 in P , and consider the

cone

Ĉ(0)(x0(λ)) = x0(λ)+ cone
(
u
(0)
1 (λ), u

(0)
2 (λ), . . . , u

(0)
l (λ)

)
. (4.21)

Let us denote by E(0)
i,λ(τ ) = x0(λ)+ τu

(0)
i (λ) the ith extreme ray of Ĉ(0)(x0(λ)) and

note that C(x0) = Ĉ(0)(x0(0)). We now increase λ, i.e., we pull x0 in the direction
−c and use x(0)1 , x

(0)
2 , . . . , x

(0)
l as ‘hinges’ for the extreme rays of the cone, until we

either have x0(λ) ∈ bd(L(f̂ − ε)) or at least one extreme ray starts to enter the
interior of P . This is illustrated in Figure 6 for the two-dimensional case, where
we can increase λ up to λ2 without entering the interior of P .

Suppose λ(1) is the smallest value such that for λ > λ(1) an extreme ray of
Ĉ(0)(x0(λ)), say E(0)

1,λ(τ ), enters the interior of P , and suppose that we have λ(1) <
λ0, where λ0 is determined by x0(λ0) ∈ bd(L(f̂ − ε)). Then there exists a x(0)1 -
containing facet of P that not only is touched by the extreme ray E(0)

1,λ(1)
(τ ) at some

point but also contains part of the ray. E(0)

1,λ(1)(τ ) enters this facet for τ = 1 at

x
(0)
1 and leaves it for some τ (1)1 > 1 (cf. E(0)

1,λ2
(τ ) in Figure 6). The unique point

x
(1)
1 := E

(0)

1,λ(1)
(τ

(1)
1 ) where the extreme ray E(0)

1,λ(1)
(τ ) leaves this facet is then used as

a new hinge for the ray, i.e., we update the direction of the extreme ray for λ > λ(1)

by setting u(1)1 (λ) := x
(1)
1 − x0(λ). This updated direction ensures that the ray does

not enter the interior of P when λ is further increased. We define u(1)i := u
(0)
i for

i = 2, 3, . . . , l and then consider for λ > λ(1) the modified cone

Ĉ(1)(x0(λ)) = x0(λ)+ cone
(
u
(1)
1 (λ), u

(1)
2 (λ), . . . , u

(1)
l (λ)

)
.

This is also illustrated in Figure 6, where λ(1) = λ2.
Next we further increase λ until either λ = λ0 or an extreme ray of the modified

cone Ĉ(1)(x0(λ)) starts to enter the interior of P . In the latter case we update the
direction of the respective extreme ray as described above, and so on. The process
terminates when λ(k−1) < λ0 ≤ λ(k), where k ≥ 1 and λ(0) := 0. Then we set
Ĉ(x′

0) := Ĉ(k−1)(x0(λ0)). It is not hard to prove the following.
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Figure 6. Base cones for different values of λ

PROPOSITION 4.1 The procedure described above terminates after a finite num-
ber of iterations with a cone Ĉ(x′

0) = x′
0+cone(̃u1, ũ2, . . . , ũl )with x′

0 ∈ bd(L(f̂−
ε)), for which each cone edge Ẽi(τ ) = x′

0 + τ ũi , τ ≥ 0, touches the polytope P at
its boundary and contains no interior points of P .

Finally, let us briefly outline how to determine the values λ(k) in the procedure
described above.

REMARK 4.1 If the extreme ray E(k−1)
i,λ (τ ) = x0(λ) + τu

(k−1)
i , τ ≥ 0, enters the

interior of P as λ increases, then it intersects the boundary of P the first time at a
x
(k−1)
i -containing facet of P for some τ > 1, where x(k−1)

i is the incumbent hinge of
E

(k−1)
i,λ (τ ). Based on this observation, for an extreme ray E(k−1)

i,λ (τ ) we can identify
that inequality of the system Ax ≤ b which describes the facet of P intersected by
E

(k−1)
i,λ (τ ). For this inequality, say aT

i x ≤ βi , aT
i x0(λ) < βi holds for 0 ≤ λ ≤ λ(k−1)

and aT
i x

(k−1)
i = βi . Then λ

(k)

i with aT
i (x0(λ

(k)) + τu
(k−1)
i (λ(k))) = βi is the smallest

value of λ for which the extreme ray E
(k−1)
i,λ (τ ) starts to enter the interior of P .

Hence the minimum of the respective λ(k)i gives us λ(k).

4.3. CONSTRUCTING A P-CONTAINING CONE

Even though in the two-dimensional case the base cone Ĉ(x′
0) is always the smal-

lest P -containing cone vertexed at x′
0, i.e., C(x′

0) = Ĉ(x′
0), this is not necessarily

true when dim(P ) > 2. This is illustrated in Figure 7, where the base cone Ĉ(x′
0)

contains only a part of P . For instance, the vertex x̂ of P lies above the facet of
Ĉ(x′

0) spanned by the cone edges Ẽ1(τ ) and Ẽ2(τ ).
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Figure 7. The base cone Ĉ(x′
0)

Therefore, after we have derived the n-dimensional base cone

Ĉ(x′
0) = x′

0 + cone(̃u1, ũ2, . . . , ũl)

we have to determine whether it contains the complete polytope P or not, i.e., l = t

or l < t in (4.18) and (4.19). If not, then we have to determine the remaining t − l

directions. These steps can be done as follows.
First, we set C̃(0)(x′

0) := Ĉ(x′
0) and k := 0. Let us now consider the cone

C̃(k)(x′
0). For each facet Gi of C̃(k)(x′

0) we determine a hyperplane gT
ix ≤ θi such

that Gi = {x ∈ C̃(k)(x′
0) | gT

ix = θi} and

C̃(k)(x′
0) ⊂ {x ∈ IR | gT

ix ≤ θi},
where we omit, to simplify the notation, the index k whenever possible. Because of
the special structure of the cone C̃(k)(x′

0) such an inequality can be easily determ-
ined. With the help of gT

ix ≤ θi we can now determine whether there exists a vertex
of P that lies ‘above’ the facet Gi of C̃(k)(x′

0). For this purpose we solve the linear
program

max{gT
ix | x ∈ P }. (4.22)

Since by construction each ray Ẽi(τ ) := x′
i + τ ũi , τ ≥ 0, of C̃(k)(x′

0) contains at
least one boundary point of P , for an optimal solution x̂i of (4.22) it holds gT

i x̂i ≥
θi . We now have to distinguish between two cases:

Case 1: Suppose it holds gT
i x̂i = θi . Then P lies in the half-space defined by gT

ix ≤
θi , i.e., there exists no vertex of P that lies above the facet Gi of C̃(k)(x′

0). In
Figure 7 this is the case, for instance, for the facet of Ĉ(x′

0) (= C̃(0)(x′
0)) that

is spanned by the edges Ẽ1(τ ) and Ẽ3(τ ).
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Case 2: Suppose we have gT
i x̂i > θi , i.e., P �⊆ C̃(k)(x′

0). In Figure 7 this is the
case, for instance, for the facet of Ĉ(x′

0) (= C̃(0)(x′
0)) that is defined by the

edges Ẽ1(τ ) and Ẽ2(τ ). In this case we have to enlarge the cone C̃(k)(x′
0). We

do this by adding another direction ũl+k+1 to the directions of C̃(k)(x′
0), where

x′
0 + τ ũl+k+1, τ ≥ 0, contains a vertex of P but no interior points of P , i.e. we

define the cone C̃(k+1)(x′
0) = x′

0 +cone(̃u1, ũ2, . . . , ũl+k+1). We set k := k+1
and repeat the procedure described above for the enlarged cone.

The procedure terminates when Case 1 for all facets of the cone C̃(k)(x′
0) holds.

Since P has only a finite number of vertices, this condition is always fulfilled after
a finite number of iterations.

However, before we can prove that we have obtained with this approach the
cone C̃(x′

0) in (4.19), we have to discuss how to determine an appropriate direction
ũl+k+1 in Case 2. For this purpose let us consider the optimal solution x̂i of (4.22),
where we assume w.l.o.g. that x̂i is a vertex of P . By defining

ūi := x̂i − x′
0

we get a ray x′
0 + τ ūi , τ ≥ 0, that contains the vertex x̂i of P . It holds gT

ix
′
0 < gT

i x̂i
which implies

gT
i (x

′
0 + τ ūi)

{
< gT

i x̂i for 0 ≤ τ < 1,

≥ gT
i x̂i for τ ≥ 1.

(4.23)

Because of P ⊂ {x ∈ IR | gT
ix ≤ gT

i x̂i} and (4.23) for τ ≥ 1, the ray x′
0 + τ ūi does

not contain interior points of P . However, it may contain interior points of P for
some τ with 0 < τ < 1. To check this we determine

τ ∗
i = min{x′

0 + τ ūi ∈ P | τ ≥ 0}. (4.24)

Note that we always have 0 < τ ∗
i ≤ 1. If we have τ ∗

i = 1, then x0 + τ ūi , τ ≥ 0,
contains no interior points of P and we can set ũl+k+1 := ūi .

However, if τ ∗
i < 1, then the ray x′

0 + τ ūi , τ ≥ 0, may contain interior points
of P . Since x′

0 + τ ∗
i ūi and x̂i lie on the boundary of P and P is convex, the ray

x′
0 + τ ūi , τ ≥ 0, contains no interior points if and only if

1

2

(
(x′

0 + τ ∗
i ūi )+ x̂i

)
�∈ int(P ). (4.25)

If (4.25) holds, then, as above, we set ũl+k+1 = ūi . Otherwise we have to
determine another vertex of P lying above the facet Gi with which we can derive a
cone edge fulfilling the respective conditions. This is done as follows.

First we set g(0)
i := gi , θ

(0)
i := θi , x̂

(0)
i := x̂i and ū

(0)
i := ūi . Let us now con-

sider the hyperplane g(0)T
i x = θ

(0)
i that contains x′

0 and is spanned by the directions
ũi1 , ũi2 , . . . , ũin−1 of C̃(k)(x′

0). We choose one of these directions, in our case, for
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instance, ũin−1 , replace this direction by ū
(0)
i , and set j := 0. Then we determine

the hyperplane g(j+1)T
i x = θ

(j+1)
i that contains x′

0 and is spanned by the directions
ũi1 , ũi2 , . . . , ũin−1 , ū

(j)

i . By solving the linear program

max{g(j+1)T
i x | x ∈ P } (4.26)

we get a vertex x̂(j+1)
i of P with g(j+1)T

i x̂
(j+1)
i > θ

(j+1)
i . Note that the ray x′

0 + τ ū
(j)

i ,
τ ≥ 0, which is contained in the hyperplane g

(j+1)T
i x = θ

(j+1)
i , contains interior

points of P . We modify the direction ū(j)i by defining

ū
(j+1)
i := x̂

(j+1)
i − x′

0.

If this modified ray x′
0 + τ ū

(j+1)
i , τ ≥ 0, contains no interior points of P , which

can be determined as above, then we are done, i.e., we define ũl+k+1 = ū
(j+1)
i .

Otherwise we set j := j + 1 and repeat this procedure. It is not hard to verify that
this procedure is finite.

This whole procedure for constructing the cone C̃(x′
0) in (4.19) stops after

a finite number of iterations with a cone C̃(k)(x′
0) = cone(̃u1, ũ2, . . . , ũt ) such

that for all facets of this cone the conditions of Case 1 are fulfilled. Then we set
C̃(x′

0) := C̃(k)(x′
0). In Figure 8 we have indicated such a cone, which was derived

from the base cone Ĉ(x′
0) depicted in Figure 7 in the fashion described above. It

holds:

PROPOSITION 4.2 Let C̃(x′
0) := C̃(k)(x′

0) denote the final cone of the iterative
procedure described above. Then we have C(x′

0) = C̃(x′
0), i.e. C̃(x′

0) is the smallest
cone vertexed at x′

0 that contains P .
Proof. Each extreme ray x′

0 + τ ũi , τ ≥ 0 of the cone C̃(x′
0) touches, by con-

struction, the boundary of P . Hence these rays are contained in C(x′
0). Since C(x′

0)

is a convex cone, we therefore have

C̃(x′
0) ⊆ C(x′

0). (4.27)

But C̃(x′
0) is also a convex cone vertexed at x′

0. Furthermore, since for all its facets
Case 1 holds, we have P ⊂ C̃(x′

0). However, C(x′
0) is, by definition, the smallest

P -containing cone vertexed at x′
0. Hence we have C(x′

0) ⊆ C̃(x′
0). With (4.27) we

therefore have C(x′
0) = C̃(x′

0), which proves the Proposition. �
According to Proposition 4.2 we have C(x′

0) = C̃(x′
0). However, some dir-

ections of the recession cone of C̃(x′
0) = x′

0 + cone(̃u1, ũ2, . . . , ũt ) are usually
superfluous, i.e. the representation of the recession cone is not minimal. For in-
stance, those directions derived in the construction of the base cone which contain
no vertices of P can be eliminated. Therefore, to obtain a representation of the
cone C(x′

0) in the form (4.16) we have to identify and eliminate all the superfluous
directions. This can be done in the usual way. However, this final step is not abso-
lutely necessary, since, as can easily be verified, deriving a valid cut w.r.t. the cone
C(x′

0) or w.r.t. the cone C̃(x′
0) results in identical cuts.
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Figure 8. The cone C(x′
0)

5. Iterative Cut Improvement

The starting point for our considerations in this paper was an x0-eliminating con-
cavity cut cT(x−x0) ≥ 1 that was derived w.r.t. the cone C(x0). As we have seen in
the second section, we can get a deeper cut by deriving a cut w.r.t. the cone C(x′

0),
where x′

0 = x0−λ0c ∈ bd(L(f̂−ε)) and λ0 > 0. If dT(x−x0) ≥ 1 is the cut derived
w.r.t. C(x′

0), then it is a valid cut which, in general, dominates the corresponding
concavity cut. However, we can further improve the cut dT(x − x0) ≥ 1 in an
iterative fashion by pulling the base of the cone further in the direction −c. This is
based on the following considerations.

First, for λ+ ≥ λ0 the only part of the cone C(x0(λ
+)) with x0(λ

+) = x0 − λ+c
that is of interest to us is the part which lies in the half-space dT(x − x0) ≥ 1. This
follows from our knowledge that the part lying in the half-space dT(x − x0) ≤ 1
does not contain a point x ∈ P with f (x) < f̂ −ε. Hence we can restrict ourselves
to considering

C(x0(λ
+)) ∩ {x ∈ IRn | dT(x − x0) ≥ 1}.

Let C(x0(λ
+)) be of the form

C(x0(λ
+)) = x0(λ

+)+ cone
(
u1(λ

+), u2(λ
+), . . . , usλ+ (λ

+)
)
,

and for i = 1, 2, . . . , sλ+ let x̄i (λ+) denote the intersection point of the edge
Ei,λ+(τ ) = x0(λ

+) + τui(λ
+), τ ≥ 0, with the hyperplane dT(x − x0) = 1. Then
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Figure 9. Cut improvement with positive values of λ

we have

C(x0(λ
+)) ∩ {x ∈ IRn | dT(x − x0) ≥ 1}

= conv
(
x̄1(λ

+), . . . , x̄sλ+ (λ
+)

)
+ cone

(
u1(λ

+), . . . , usλ+ (λ
+)

)
.

(5.28)

Second, by construction of the cut dT(x − x0) ≥ 1 we have x̄i (λ+) ∈ L(f̂ − ε)

for i = 1, 2, . . . , sλ+ and λ+ = λ0. In general, if we increase the value of λ+ the
distance from x̄i (λ

+) to the boundary of L(f̂ −ε) also increases. This is illustrated
in Figure 9.

By choosing an appropriate λ+ with λ+ > λ0 such that

x̄i (λ
+) ∈ int(L(f̂ − ε)) for i = 1, 2, . . . , sλ+

we can make use of (4.28) to derive a cut that dominates the cut dT(x − x0) ≥ 1.
For this purpose we determine the maximal τ+

i such that Ei,λ+(τ+
i ) lies on the

boundary of L(f̂ − ε) and, in analogy to (4.15), solve the linear program

minimize cTd

s.t. dT(Ei,λ+(τ+
i )− x0) ≥ 1 for i = 1, 2, . . . , sλ+ ,

dT(x̄i(λ
+)− x0) ≤ 1 for i = 1, 2, . . . , sλ+ .

(5.29)
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Figure 10. Cut improvement with negative values of λ

Let d̂ be an optimal solution of (4.29). Then d̂T(x − x0) ≥ 1 is a valid cut for
P ∩ {x ∈ IRn | dT(x − x0) ≥ 1}. This follows from

{x ∈ P | dT(x − x0) ≥ 1} ∩ {x ∈ IRn | d̂T(x − x0) ≤ 1}
⊂ C(x0(λ

+)) ∩ {x ∈ IRn | dT(x − x0) ≥ 1, d̂T(x − x0) ≤ 1}
⊂ conv

(
x̄1(λ

+), . . . , x̄sλ+ (λ
+), E1,λ+(τ+

1 ), . . . , Esλ+ ,λ+(τ+
sλ+ )

)
⊂ L(f̂ − ε).

This means that the cut d̂T(x − x0) ≥ 1 eliminates no x in P ∩ {x ∈ IRn | dT(x −
x0) ≥ 1} with f (x) < f̂ − ε. However, by construction the cut dT(x − x0) ≥ 1
is either dominated by or equivalent to the cut d̂T(x − x0) ≥ 1. Furthermore, the
cut dT(x − x0) ≥ 1 is a valid cut for P . This implies that d̂T(x − x0) ≥ 1 is also
a valid cut for P . This can also be seen in Figure 9, which shows such a valid cut
d̂T(x − x0) ≥ 1.



134 MARCUS POREMBSKI

We can repeat this procedure with the cone C(x0(λ
+)) and the cut d̂T(x− x0) ≥

1, and so on. In this way we get an iterative cut improvement procedure.
In an extreme situation of the iterative procedure we may end up with a cone

C(x0(λ))with λ = ∞. In this case the edges Ei,λ(τ ) are parallel to the line x0 −λc,
λ ∈ IR. Such a situation and the corresponding cut are also illustrated in Figure 9.
A comparison of this cut with the initial cut depicted in Figure 5 shows that the
procedure for cut improvement can lead to substantially deeper cuts. Even more
dramatic is the improvement in comparison to the concavity cut of Figure 1.

However, even for λ = ∞ some further improvement of the resulting cut may
be possible. The basic idea here is to choose a negative value λ− for λ. Starting
with a very small (negative) value for λ we successively increase λ. As can be seen
in Figure 10, the corresponding cones and the concavity cut cone C(x0) first shown
in Figure 1 lie face to face.

As for positive values of λwe have to choose λ− with λ− < 0 in such a way that
the edges of the cone C(x0(λ

−)) intersect the cut which was derived in the previous
iteration in the interior of L(f̂ − ε). We can derive a cutting plane w.r.t. C(x0(λ

−))
by a linear program similar to (4.29). Note that in this case Ei,λ−(τ−

i ) is the point
where Ei,λ+(τi) intersects the boundary of L(f̂ − ε) for the first time. Such a cut
d̄T(x − x0) = 1, which dominates the cut derived for λ = ∞, is indicated in Figure
10.

6. Concluding Remarks

Concavity cuts were first introduced in the context of concave minimization but
they since also found application in different types of algorithms for other global
optimization problems, e.g., reverse convex programming, bilinear programming
and Lipschitzian optimization. It is still unclear, however, whether the finite con-
vergence of a cutting plane algorithm for concave minimization can be ensured by
concavity cuts or not.

The main goal of the present paper was to modify concavity cuts in such a
way that the finite convergence of a corresponding cutting plane algorithm can be
established without introducing enumerative elements such as facial cuts. The basic
idea behind the proposed modification is simple: just pull the base of the cone that
is used to derive a Tuy cut away from the polytope P .

However, determining an explicit representation of the resulting cone can be
quite time-consuming. Hence deriving a cut in the manner proposed in this paper
may be much more expensive than deriving a concavity cut. But as experiments
with cutting planes derived by cone decomposition have shown (cf., Porembski,
1999), it may be worth the added expenses if the derived cut is much deeper than
the corresponding concavity cut. The cost of deriving such a cut may be high, but
the number of cuts needed to solve the concave minimization problem may be
much smaller than with concavity cuts. However, this remains to be thoroughly
examined in computational experiments.
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